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Abstract The latest generation of GNSS satellites such as
GPS BLOCK-IIF, Galileo and BDS are transmitting signals
on three or more frequencies, thus having more choices in
practice. At the same time, new challenges arise for integrat-
ing the new signals. This paper contributes to the modeling
and assessment of triple-frequency PPP with BDS data. First,
three triple-frequency PPP models are developed. The obser-
vation model and stochastic model are designed and extended
to accommodate the third frequency. In particular, new biases
such as differential code biases and inter-frequency biases as
well as the parameterizations are addressed. Then, the rela-
tionships between different PPP models are discussed. To
verify the triple-frequency PPP models, PPP tests with real
triple-frequency data were performed in both static and kine-
matic scenarios. Results show that the three triple-frequency
PPP models agree well with each other. Additional frequency
has a marginal effect on the positioning accuracy in static PPP
tests. However, the benefits of third frequency are significant
in situations of where there is poor tracking and contami-
nated observations on frequencies B1 and B2 in kinematic
PPP tests.
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1 Introduction

It is well known that the earlier GPS and GLONASS satel-
lites were designed to transmit signals on two frequencies to
account for the dispersive part of atmosphere-induced dis-
tortions, the so-called ionospheric delays. However, the new
generations of Global Navigation Satellite System (GNSS)
all operate with three or more frequencies (Feng et al. 2007,
Li et al. 2010). As part of the modernization of GPS, newly
launched Block-IIF satellites are now transmitting the third
civil signal L5 (1176.45 MHz) in addition to the existing
L1 (1575.42 MHz) and L2 (1227.60 MHz) signals (http://
www.gps.gov). The Europe Galileo system was designed
to provide signals in a total of four frequencies centered at
E1(1575.42 MHz), E6 (1278.75 MHz), E5b (1207.14 MHz)
and E5a (1176.45 MHz) for commercial and civilian use
(http://www.gsc-europa.eu). The Chinese BeiDou Naviga-
tion Satellite System (BDS) has already launched a regional
navigation service since the end of 2012 and continues to
develop a global system in the near future (http://www.
beidou.gov.cn). Currently, a total of 20 operational BDS
satellites including five geostationary orbit (GEO), eight
inclined geosynchronous orbit (IGSO) and seven medium
altitude Earth orbit (MEO) satellites are transmitting triple-
frequency signals centered at B1 (1561.098 MHz), B2
(1207.14 MHz), and B3 (1268.52 MHz).

The extra frequencies are expected to benefit precise
GNSS data processing, such as carrier phase multipath
extraction, cycle slip detection, and especially ambiguity
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resolution. The only known way to extract phase mul-
tipath information is through residuals of short baseline
processing, since no single-station indicators are available in
dual-frequency GNSS. With the third or more frequencies,
new approaches to estimate phase multipath from a single-
station become available (Simsky 2006). Due to the presence
of new frequencies, the traditional approaches dealing with
cycle slip problems are expanded to multi-frequency cases
(e.g.,Daietal. 2009; Lacy etal. 2012; Zhao etal. 2015; Zhang
and Li 2015). As for carrier phase ambiguity resolution
(AR), significant research effort has been invested towards
GPS and Galileo AR in relative positioning using three or
more frequencies, including the earliest studies by Forssell
et al. (1997) and Vollath et al. (1998), which described the
three carrier phase ambiguity resolution (TCAR) approach.
Hatch et al. (2000) and Jung et al. (2000) proposed the cas-
cading integer resolution (CIR) method. However, both the
TCAR and CIR were designed for use with the geometry-free
model. Teunissen et al. (2002) compared the TCAR, CIR
and the least-squares ambiguity decorrelation adjustment
(LAMBDA) methods at different levels, proving LAMBDA
the optimal method for GNSS AR. Since 2005, a large num-
ber of publications have contributed to TCAR issues, and the
term TCAR has been extended to use with both the geometry-
free and geometry-based models (e.g., Feng and Rizos 2005;
Feng 2008; Feng and Li 2009; Li et al. 2010; Tang et al. 2014;
Zhang and He 2015). Generally, all the proposed methods
aim to shorten the time span necessary for the successful
estimation of ambiguities at the correct integer values or to
stretch the baseline length for which a successful resolution
is possible in real time.

Nevertheless, only a few studies relate to multi-frequency
precise point positioning (PPP). One example is that Geng
and Bock (2013) proposed a method for triple-frequency
PPP ambiguity resolution, and demonstrated its potential
to achieve rapid ambiguity resolution with simulated triple-
frequency GPS data. However, they still used the traditional
dual-frequency model to achieve the final PPP solutions.
The triple-frequency PPP model and its performance were
not fully investigated. Tegedor and @vstedal (2014) as well
as Elsobeiey (2015) also investigated triple carrier precise
point positioning using GPS L5. Unfortunately, the num-
ber of GPS satellites with triple-frequency signals was quite
limited and thus the contribution of third frequency has
not been effectively demonstrated. As the only one truly
operating triple-frequency navigation system, BDS provides
the feasibility to demonstrate the practical performance of
triple-frequency PPP. Conventionally, the ionosphere-free
carrier phase (and pseudorange) combination is used in dual-
frequency PPP. With the third frequency, more combination
choices are available and the redundancy of observations is
significantly increased. Therefore, the third signal is expected
to be beneficial to enhancing the possibilities for the best
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positioning. But how much we can benefit from an addi-
tional signal is still a major open research topic. At the same
time, new challenges arise for processing the new signals, as,
for instance, new biases need to be properly handled.

This paper contributes to the modeling and assessment
of triple-frequency float PPP with BDS. In Sect. 2, we will
first present the mathematical models of triple-frequency
PPP with BDS. In particular, new biases as well as para-
meterizations will be addressed. The Sect. 3 will present the
assessment of the triple-frequency PPP models. After a short
statement about the data and processing schemes, the posi-
tioning performance of both dual- and triple-frequency PPP
will be demonstrated in both static and kinematic scenarios.
Last, the conclusions will be shown in Sect. 4.

2 Triple-frequency PPP models for BDS

This section presents the mathematical models for triple-
frequency PPP with BDS data. After a short description of
the general observation model, the ionosphere-free, triple-
frequency PPP models, and the uncombined triple-frequency
PPP models are developed in detail. We end this section with
discussions on the different models.

2.1 General observation model

For a single epoch observation between one satellite and one
receiver, the undifferenced (UD) pesudorange P and carrier
phase L measurements can be modeled as (Leick 2003; Xu
2007):

Ply=p +ty =t + oy LT +dry —dy + &, (1)
LS, =0+t — 15—y I 4T + Ay - wl + A - NS,
+)Ln : (br,n - b,i) +€ry‘n (2)

where indices s, r, and n refer to the satellite, receiver, and
carrier frequency, respectively; p; denotes the geometric dis-
tance between satellite and receiver; ¢, and #° are the clock
biases of receiver and satellite; Irs | is the slant ionospheric
delay at B1 frequency; y;, is the ’ionospheric factor at fre-
quency n; T} is the tropospheric delay of the signal path;
An 18 the carrier phase wavelength; w? is the phase wind-up
delay; N, is the integer phase ambiguity; d; , and d,, are the
code biases of receiver and satellite; b, , and b} are, respec-
tively, the uncalibrated phase delays (UPDs) for receiver and
satellite. &7, and &, are the sum of multipath effects and
thermal noise for the pseudorange and carrier phase measure-
ments. Note that all variables are expressed in meters; except
the ambiguity, UPDs, and phase wind-up delay, which are
expressed in cycles.
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For convenience, the following notations are defined:

_f, f2 fi
Y = s Bun = ——5—,DCB} ,
n fn mn fm f2 mn f f2
=dj, —d),DCB,.up = dyy — dy.p 3

where f), is the signal frequency (m,n =1,2,3; m #n);
Ay and B, are frequency factors; DCB?,, and DCB, ., are
commonly referred to as the satellite or receiver differential
code bias (DCB) between P, and P,,.

The first order of ionospheric delays can be eliminated by
forming linear combination(s) of measurements at different
frequencies. Such combination is known as ionosphere-free
(IF) combination, which is the most popular model used
in PPP. An alternative way is to process the raw measure-
ments where the slant ionospheric delays are estimated as
unknowns. Tropospheric delays of the dry component are
usually corrected by a priori empirical model, while the
zenith wet delays are estimated as unknowns. In addition,
the phase center offsets (PCO), relativity effects, as well as
Earth tides must also be corrected according to the existing
models (Kouba 2009; Petit and Luzum 2010), although they
are not included in Egs. 1 and 2.

Typically, precise orbit and clock products from IGS
MGEX (Multi-GNSS Experiment) are used in PPP to remove
satellite orbit and clock errors (Dow et al. 2009). By con-
vention, the precise BDS satellite clock corrections are
associated to B1/B2 ionosphere-free combination. As such,
the precise satellite clock correction (#},) contains a specific
linear combination of P1 and P2 code biases, that is:

t, =1+ (a2 -d} + B2 - d3) 4

The satellite code biases can only be mitigated by forming
B1/B2 IF combination, whereas they cannot be cancelled in
any other combination. To account for this, satellite DCB
products provided by MGEX can be used for compensation
according to Guo et al. (2015). For the carrier phase, the
uncalibrated phase delays cannot be cancelled and will be
mapped into ambiguities. This mapping will not be a problem
since the ambiguities are estimated as a lumped term and
treated as float values.

With precise satellite orbit, clock and DCB corrections,
the corresponding terms can be removed and the pseudorange
and carrier phase observation can be simplified as:

I +M;
r, I'HVIY

Pl =pppttr+Vn-
Lr,n = IOr,L Tl = Vn-

: Tr + dr,n + 8,S«,n (5)
Tr+)\n‘N}in+§;{n (6)
where p is the same quantity as p plus the contribution of

satellite clock biases, dry tropospheric delays, phase center
offsets, relativistic effects, Earth tides, and phase wind-up

(carrier phase only), etc. M; is the mapping function of wet
tropospheric delays; 7 is the zenith tropospheric delay at
station r; N}’ is the lumped ambiguity term, which is non-
integer due to the presence of UPDs:

A-/:,n :N}in‘i_br,n _b;; (7)

With triple-frequency BDS data, a general model of linear
combinations can be expressed as (Feng 2008):

S — L. S . L )
Pl =1 eLujb Pyt enijn- P

+k-e3,jk - Prs’3 (8)
LyGip=1ieajib Liy+ij-enjb Lo
+k-e3 i Lys )

where i, j, and k (i, j,k = 0, 1) are, respectively, the
frequency indexes of B1, B2 and B3 signals. A value of
zero or one means that signal at the corresponding fre-
quency is excluded from or included for the combination.
en,(i,jk(n = 1,2, 3)is the combination coefficient of the nth
(frequency) signal. The uncombined model can be regarded
as a special case of linear combination model.

2.2 IF-based models

The ionosphere-free (IF) PPP model with triple-frequency
measurements can be implemented by the following two
means: on the one hand, measurements on triple frequen-
cies could be combined between any of the two frequencies
like the dual-frequency ionosphere-free combination. In this
case, it will produce three dual-frequency ionosphere-free
carrier phase (and pseudorange) combinations (i.e., B1/B2,
B1/B3, and B2/B3). We define this model as “IF-PPP1”
in this paper. On the other hand, measurements on triple
frequencies could be directly combined among three frequen-
cies, in which case only one optimal (i.e., minimum noise)
triple-frequency, ionosphere-free carrier phase (and pseudo-
range) combination (i.e., B1/B2/B3) is obtained. We define
such model as “IF-PPP2”.

2.2.1 IF-PPPI: ionosphere-free model with two
dual-frequency combinations

Applying Egs. 8,9, we can form three sets of dual-frequency,
ionosphere-free combination for the pseudorange among B1,
B2 and B3 signals:

N N
Prano €L (L1,0)  €2,(1,1,0) 0 Py
s _ K
Praon | =] enaon 0 €3,(1,0,1) P,y
N
P o1 0 eonn eaoinllLFP;

(10)
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Same combination equations hold for the phase observables.  L; ;1) =era,1,1 Ly +ex a1 Ly
The coefficients of the combinations are obtained by impos- +esan - LY (17)

ing the ionosphere-free condition on each combination.

Note that only two of the three sets of IF combination are
independent. Considering that the noise amplification factor
of the third combination is much larger than the other two,
the first two sets of combination, i.e., (1, 1, 0) and (1, 0, 1),
are used in this model.

In the case that the receiver hardware delay has a com-
mon bias for the dual-frequency IF-PPP (using only B1/B2
or B1/B3), such bias will be absorbed by the receiver clock
parameter and thus we do not have to consider it. However,
the situation is different for triple-frequency PPP once we
use two or more IF combinations (B1/B2 and B1/B3). Since
the receiver code biases are different on each IF combi-
nation, they cannot be compensated by the receiver clock
anymore. To account for this, separate clock parameters
should be solved for each IF combination. Alternatively, an
inter-frequency bias (IFB, or receiver differential code bias)
parameter can be estimated in addition to the receiver clock
bias. Here, we introduce an IFB parameter on the B1/B3 code
combination. The receiver IFB is considered as common to
all satellites. Then, the linearized observation equations can
be written as

pi’(l’l’o) :H«X‘i‘fr‘}‘M}Y 'Tr (11)

Bano=m-X+i+M T+ B (12)

Praon =H X+t +M T, +ifb (13)

l;i(l’o’]) =M- X + lTr + M}Y : Tr + B}i(l,O,]) (14)
- . K K T

S=I[X,1,T,if b, Brg’(l’l,o)v B;,(l_o,l)] (15)

where p and / denote the OMC (observation minus com-
puted) values of pseudorange and carrier phase observables;
S is the estimates vector; w is the vector of line of sight. X
stands for the three-dimensional coordinates of receiver; i f b
is the receiver inter-frequency bias; 7, and Bf are, respec-
tively, the receiver clock bias and ambiguity estimates (unit:
m). Particularly, the estimable receiver clock 7, refers to the
ionosphere-free clock (¢, 12), which is based on the P1 and
P2 code IF combination.

2.2.2 IF-PPP2: ionosphere-free model with a single
triple-frequency combination

Different from the IF-PPP1 model which forms two dual-
frequency ionosphere-free combinations (B1/B2, and B1/
B3), the IF-PPP2 model directly combines the triple-frequ-
ency measurements within one combination (B1/B2/B3),
that is,

Prs,(l,l,l) =ea1n Py +earn - Pl
+esa1n - Py (16)
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Similar to the IF-PPP1 model, the first order of ionospheric
delays is expected to be cancelled and the geometric distance
should be kept unchanged. However, such two conditions are
insufficient to solve for three unknown parameters and fur-
ther information is required. The coefficients may be various
depending on different criteria such as the minimum noise,
integer ambiguities, and long wave length. In this contribu-
tion, we choose the minimum noise as the additional criterion
for the IF-PPP2 model, and thus the combination coefficients
can be uniquely determined.

Since all three pseudoranges are combined within the
same code observation equation, the receiver hardware delay
biases all ranges by a constant which will be eventually
absorbed by the receiver clock parameter. Thus, we do not
have to consider it (receiver DCB or inter-frequency bias) in
this triple-frequency PPP model. The linearized observation
equations can be written as:

pi(l’l’l) ZMX+t_r+M5 - T (18)
Bainy=mn-X+t+M T+ B (19)
S=IX,1,T,, Bj; ]" (20)

Different from the IF-PPP1 model, the estimable receiver
clock bias 7, and phase ambiguity B’ (1.1,1) are associated to
the (1, 1, 1) ionosphere-free combination (B1/B2/B3).

2.3 Uncombined model

As already mentioned, the uncombined model can be con-
sidered as a special case of the combined model, in which the
combination coefficients are identity matrices. The uncom-
bined code observation model reads (Schonemann et al.
2011):

Py 1,00 N

Ploro | =0 1 0[] P, 1)
S

P’ 0.0.1) 00 1]LP,

Same uncombined equations hold for the phase observables.
By applying Eqs. 5 and 6, the observation model can be
expanded as:

PS0.0) = Pop+ 12+ (15 + Bra - DCB, 12)

M T, 465 (22)
Li,(l,O,O) = ﬁ:,L +t 12 — (Irx’l + B12 - DCBy12)

+M T, + B + &, (23)
Pl 0.1.0) = Prp t 12+ v2- (I + Bi2- DCB,12)

+M; T, + ), (24)
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Ly 1.0 = Prp T 12— v2- (I} + B2 - DCB,. 12)

+M; - T, + B}, + &, (25)
P’ ooy = 0Opptt2+ys- (I + pra-DCBy 12)
+M - T, + (%DCBAIZ —DCB;13) + &5
(26)
L} 0.0.1) = Prp T1r12—v3- (I + P12 - DCB, 12)
+M; - T, + B3+ &3 27

Unlike the IF-based PPP models, the slant ionospheric delays
are treated as unknowns. Note that both the ionospheric
delays and differential code biases are frequency depen-
dent. This implies that not all parameters can be unbiasedly
estimable due to rank deficiency, but only combinations of
them. For dual-frequency PPP (see also Eqs. 22-25), itis well
known that the ionospheric delay (/) and receiver differ-
ential code bias (DCB;. 12) are perfecf]y correlated, and they
are estimated as lumped terms in general. As for the triple-
frequency PPP, the effects of differential code biases on the
third pseudorange, however, cannot be completely absorbed
into the ionospheric estimate (see Eq. 26). An additional
IFB parameter is, therefore, required to compensate for these
effects. Eventually, the linearized observation equations can
be written as:

Praooy =m- X+ +15 +M-T, (28)
Baooy=n-X+6—I+M T, +B, (29)
Plotogy =K X+t +M T (30)

l}v,(o,l,o)ZM'X-Ffr—J/z'I_rSJ+M‘:‘Tr+Bi2 3D
Proon =M X+ +ys- L5 +M T, +ifb (32
Boon=u-X+i—ys- I+ M -T, + B, (33)

S =X, 5, Ty, I¥,.ifb, B, BS,, B51" (34)
where

t_r = tr,12 (35)
I}y =17 + B2 - DCB; 12 (36)

It is noted that the estimable receiver clock bias is equal
to that of the IF-PPP1 model. As for the ionospheric delay
estimates, it is worth mentioning that they are not the real
slant ionospheric delays due to the effects of receiver DCBs.
In other words, the ionospheric delay and receiver differen-
tial code bias cannot be separated without the help of added
information. To separate them, external constraints such as
global ionospheric map (GIM) and receiver DCB products
from IGS can be used as a priori information.

2.4 Stochastic models

The precision of GNSS (BDS included) satellite measure-
ments can be quantified through either the satellite elevation,
the signal-to-noise ratio, or acombination of both (e.g., Wang
et al. 2002; Satirapod and Luansang 2008). The common
practice is to quantify the precision throughout the satellite
elevation angle, which can take several mapping forms such
as exponential and trigonometric functions. In this paper, we
use an elevation-dependent weighting scheme with a Sine
mapping function. Under the assumptions of uncorrelated
observations and same a prior noise (o7 = 03 = 03 = 0y)
in all three carriers, the variance—covariance matrix of the
original uncombined observations (e.g., UC-PPP model) can
be expressed as:

ol 0 0
Duc=|0 07 0 |=o05-1 (37)
0 0 o}

where o9 = a/sin(E); a is a constant, which is generally
set to be 0.003 m for carrier phase and 0.3-3.0 m for code
observations; E is the satellite elevation angle (unit: rad).

Making use of the error propagation law, the covariance
matrices for IF-PPP1 and IF-PPP2 models read:

ZIF-PPPl - AZUCAT

2 P

ai, + B, 12013
_ 0_2 12 12 (38)

0 2 2

12013 03 +,313

> epepr = A’ D ucAT =05 (ef 1)
2 2

+er a1 e an) (39)

where A and A’ are the design matrices (linear combination
coefficients) of IF-PPP1 and IF-PPP2 model, respectively.
Applying the BDS frequencies, the design matrices and
resulting covariance matrices are

2487 —1.487 0
A= [2.944 0 —1.944} (“40)
A’ =[2.566 —1.229 —0.337 ] (41)
_ 2[839% 7.322
2. weee1 = 0 [7.322 12.446 (“42)
D 1r-ppp2 = 8.2080) (43)

As shown in Eq. 42, the B1/B2 combination offers a bet-
ter priori performance than the B1/B3 combination. The
off-diagonal elements of covariance matrix are not zeroes
indicating that the two sets of combinations (B1/B2 and
B1/B3) of IF-PPP1 model are correlated. The correlation
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index reaches over 0.7. This high-correlation implies that
the off-diagonal elements of the covariance matrix used in
least-squares or Kalman filter should not be neglected to per-
form a correct parameter estimation and to obtain a realistic
a posteriori covariance matrix. It is interesting to look into
the design matrices in Egs. 40 and 41. The triple-frequency
combination coefficients of IF-PPP2 are close to those of the
B1/B2 dual-frequency combination in IF-PPP1, suggesting
the lower contribution of the third frequency. Nevertheless,
the IF-PPP2 shows smaller combination noise than the con-
ventional B1/B2 combination in IF-PPP1.

2.5 Discussions on the triple-frequency PPP models

Table 1 summarizes the major characteristics of the three
triple-frequency PPP models, including the observation used
(Obs.), approximate combination coefficients (e, e, and
e3), ionospheric delay factor with respect to Ij; | (Ion.), noise
amplification factor (Noise), and satellite DCB correction
terms. For comparison reason, the traditional dual-frequency,
ionosphere-free model (named as IF-PPPO0) is given as well.

2.5.1 Formulation forms

First, even though the three triple-frequency PPP mod-
els are implemented with different forms, the same inputs
(i.e., triple-frequency carrier phase and pseudorange mea-
surements) are used for formulation. For the IF-based PPP
models, two highly correlated dual-frequency ionosphere-
free combinations (B1/B2 and B1/B3) are formed in the
IF-PPP1 model, whereas the triple-frequency signals are
combined within one optimal ionosphere-free carrier phase
(and pseudorange) combination (B1/B2/B3) in the IF-PPP2
model. As for the UC-PPP model, three raw carrier phase
(and pseudorange) measurements are processed directly
without combination. Note that the IF-PPP1 and UC-PPP
models are more flexible than the IF-PPP2 model in the
absence of a particular frequency. By comparing the com-
bination coefficients of the IF-PPP1 and IF-PPP2 models,
we can find that the IF-PPP2 model is more like a B1/B2

Table 1 Comparisons of the dual- and triple-frequency PPP models

dual-frequency PPP model due to the lower contribution of
the third frequency. But the observation noise of the IF-PPP2
model is slightly smaller than that of the IF-PPP0O and IF-
PPP1 models.

2.5.2 Inter-frequency biases

The current precise satellite clock corrections are conven-
tionally associated to P1/P2 code IF combination. To make
use of and keep compatible with the precise clock products,
inter-frequency biases should be taken into account for all the
three triple-frequency PPP models. Satellite differential code
biases can be corrected in advance using MGEX DCB prod-
ucts. As for the receiver end, such code biases can be absorbed
by receiver clock bias parameter in the I[F-PPP2 model, and
thus we do not have to consider them. However, an additional
IFB parameter should be introduced to compensate for this
in the other two models due to their different effects on dif-
ferent frequency bands. Equations 44 and 45 show the IFB
estimates of the IF-PPP1 and UC-PPP models, respectively.
When it comes to carrier phases, the inter-frequency biases
will not be a problem since they can be absorbed by the
ambiguity estimates, which are estimated as lumped terms
and treated as float values.

ifbie-ppp1 = P12 - DCB,. 12 — B13 - DCB,, 13 (44)
. 12
ifbuc.ppp = %DCBr,IZ — DCB;,. 13 45)

2.5.3 Estimable parameters

As to the estimates, receiver coordinates and wet tro-
pospheric delays can be regarded as model independent.
The other estimates i.e., receiver clock bias, inter-frequency
bias, ionospheric delay, as well as ambiguities, however, are
associated with a particular model or combination. Inter-
frequency bias and ionospheric delay parameters are not
always necessary for the three PPP models. The ionospheric
delay parameters are cancelled in the IF-based PPP mod-
els, and the inter-frequency bias parameter disappears in the

Model Obs. el e e3 Ton. Noise DCB correction terms
IF-PPPO B1/B2 2.487 —1.487 0 0 2.90 0
IF-PPP1 B1/B2 2.487 —1.487 0 0 2.90 0

B1/B3 2.944 0 —1.944 0 3.53 Bi2- DCB}, — B3 - DCBy;
IF-PPP2 B1/B2/B3 2.566 —1.229 -0.337 0 2.86 (Bi2 — €2) - DCBS, —e3 - DCBY,
UC-PPP Bl 1 0 0 1 1 B2 - DCBS,

B2 0 1 0 1.672 1 —ai2 - DCBS,

B3 0 0 1 1.514 1 —a12 - DCBY; — Bio - DCB3;
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IF-PPP2 model. Moreover, the estimation values may be dif-
ferent among three models, even though they are designed as
the same parameter. Take the receiver clock bias for example,
the estimable clocks of IF-PPP1 and UC-PPP are referred to
as P1/P2 ionosphere-free clock (#, 12), whereas the estimated
receiver clock of IF-PPP2 is the combined effect of 7, 12 and
receiver hardware delays (shown in Eq. 46). The ambiguity
estimates are also associated with different frequencies (or
coupled frequencies).

3
hrapppp) = b+ Y (en - dr1) =112
n=1

+(e2 — B12) - DCBy 12 + €3 - DCB, 13 (46)
2.5.4 Equivalence analysis

Despite of the above-mentioned differences, we should be
aware that eliminating nuisance parameters through linear
combinations is actually equivalent to explicitly estimating
those parameters (Lindlohr and Wells 1985; Schaffrin and
Grafarend 1986). Xu (2007) documented the equivalence
properties between uncombined and combining algorithms
by algebraic linear transformations. It has been proved that
both the solution vector and the variance—covariance matrix
are identical no matter which algorithms are used (Xu 2007).
Obviously, the IF-PPP1 and IF-PPP2 models used in this
paper can be obtained by carrying out a related linear trans-
formation to the original equations (i.e., UC-PPP model).
Theoretically, all the three PPP models are equivalent as
along as the weight matrix (or variance—covariance matrix)
is similarly transformed according to the law of covariance
propagation. Although different models can lead to a more
effective (or easier) dealing of related specific problems, none
of the model will lead to better solutions or better precisions
of the solutions than the others. Solving the ionosphere-free
equations or raw observation equations will lead to the same
results.

However, it is worth mentioning that the IF combined and
UC models will lead to different results if a priori infor-
mation (e.g., constant or random-walk process) is added
on the ionosphere and inter-frequency bias parameters. In
other words, the IF-PPP and UC-PPP models are equiva-
lent only when the estimable ionospheric delays as well as
inter-frequency biases are treated as white noise process. Oth-
erwise, additional information would then have an impact on
their solutions.

3 Positioning performance evaluation

In this section, a few MGEX stations were used for both
static and simulated kinematic PPP tests to verify the triple-

frequency PPP models. Besides, a ship-borne kinematic PPP
test was performed to test the triple-frequency PPP per-
formances in real dynamic scenarios. For each test, the
positioning accuracy (i.e., epoch-wise position error and
root mean squares, RMS) was evaluated. Additionally, the
inter-frequency bias and ionospheric delay estimates were
analyzed in static PPP tests.

3.1 Data sets and processing strategy

To guarantee adequate number of tracked BDS satellites,
six Asia-Pacific regional distributed MGEX stations (namely
CUTO0, KARR, MRO1, XMIS, GMSD, and JENG) equipped
with Trimble NetR9 receivers were selected to demonstrate
the performance of triple-frequency PPP models. Observa-
tions in February 2014 (DOY 032-059) and in May 2015
(DOY 121-151) were selected as the core data sets for this
study. These MGEX stations were used for both static and
simulated kinematic PPP solutions. Moreover, a set of ship-
borne kinematic data was used to test the triple-frequency
PPP models in real dynamic scenarios.

Table 2 summarizes the detailed processing strategy for
BDS PPP. Precise orbit and clock products at intervals
of 15 and 5 min, respectively, provided by MGEX (e.g.,
GFZ) were used. A triple-frequency PPP engine based on
Kalman filter has been implemented as a new module in
TriP software (Zhang et al. 2006). For comparison, the tradi-
tional dual-frequency PPP (IF-PPPO0), which uses only B1/B2
combination, was also conducted in the following sections.
Moreover, GPS PPP solutions based on L1/L2 ionosphere-
free combinations were performed and compared with BDS
PPP. It is worth mentioning that the coordinates of the MGEX
stations are known and have an accuracy of a few millime-
ters. As for the ship-borne kinematic PPP tests, the coordinate
estimations were compared with those of double differencing
real-time kinematic (RTK).

3.2 Static PPP tests

Take day of year (DOY) 047/2014 as a case study, Fig. 1
shows the static positioning errors of CUTO, GMSD, and
JENG in the east (E), north (N), and up (U) components,
as well as the three-dimensional (3D) positioning accuracy.
By comparing the results of dual-frequency PPP between
GPS and BDS, we can find that the horizontal positioning
performance of both are comparable to each other with an
accuracy of a few millimeters. However, the vertical posi-
tioning accuracy of BDS is worse than that of GPS by a
factor of three or more. A systematic bias of 2—3 cm can be
observed on almost all the BDS-based PPP solutions. This
is reasonable when we acknowledge the following two facts.
On the one hand, the precision of BDS satellite orbits and
clock corrections is worse than that of GPS. On the other
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Table 2 BDS PPP processing strategy

Items

Models

Involved solution
Estimator (engine)
Observations
Sampling rate
Elevation cutoff
Weighting scheme

Ionospheric delay
Tropospheric delay

Relativistic effect

Station displacement

Satellite antenna phase center offset
Receiver antenna phase center offset
Phase-wind-up effect

Satellite differential code bias

Receiver inter-frequency bias
Receiver clock

Station coordinate

Phase ambiguities

B1/B2 Ionosphere-free PPP (IF-PPP0); IF-PPP1; IF-PPP2; UC-PPP

Kalman filter, TriP software (Zhang et al. 2006)

carrier phase and code observations

30s

10°

Elevation-dependent weight; 3 mm and 3 m for raw phase and code, respectively

IF-PPPO, IF-PPP1 and IF-PPP2: eliminated by Ionosphere-free combination(s); UC-PPP:
estimated as white noise process (1 x 10* m?)

Dry component: corrected with GPT model (Boehm et al. 2007)
wet component: estimated as random-walk process (1 cm?/h), GMF mapping function

Applied

Corrected by IERS Convention 2010, including Solid Earth tide and ocean tide loading (Petit and
Luzum 2010)

Corrected with conventional PCO values from MGEX (Rizos et al. 2013)
Not applied due to the lack of receiver PCO values for BDS
Corrected (Wu et al. 1993)

Corrected with MGEX DCB products for satellites (Guo et al. 2015); receiver DCBs are absorbed
by receiver clock biases or estimated as unknowns

IF-PPPO/IF-PPP2: absorbed by receiver clock biases IF-PPP1/UC-PPP: estimated as constant
Estimated as white noise process (1 x 10* m?)

Kinematic PPP: estimated as white noise process (1 x 10* m?)
Static PPP: estimated as constants

Estimated, constant for each pass; float value

GPS IF-PPPO IF-PPP1 IF-PPP2 UC-PPP |

1

E [cm]

N [cm]

3D [cm] Ul[cm]

CUTO GMSD

Fig. 1 Static positioning error of the dual-frequency (GPS and IF-

GMSD — JFNG
16.6
— — IF-PPP1
€ 164 e e e =
§ 16.2
g 16 " . . . .
o UC-PPP
m -8.2 ——~—————
L
- -84
-8.6
0 4 8 12 16 20 24
UTC [h]
JENG Fig. 2 Receiver inter-frequency bias (IFB) estimates of the triple-
frequency PPP (IF-PPP1 and UC-PPP) models on GMSD, JENG. (DOY
047/2014)

PPPO) and triple-frequency PPP (IF-PPP1, IF-PPP2, and UC-PPP)
models on CUT0, GMSD, and JENG stations (DOY 047/2014)

and 2-3 cm in vertical for both the dual- and triple-frequency
PPP models. The triple-frequency PPP model IF-PPP1 shows

hand, the current BDS constellation consists mostly of GEO
and IGSO satellites, resulting in a poorer geometry (larger
PDOP) of BDS observations compared to GPS. Comparing
the results of BDS between dual- and triple-frequency PPP,
it can be found that solutions of the IF-PPPO, IF-PPP1, IF-
PPP2 and UC-PPP agree well with each other in general.
The positioning errors are mostly within 1 cm in horizontal

@ Springer

slightly better performance than the other models.

As the by-products of triple-frequency PPP, the receiver
inter-frequency bias estimates are shown in Figs. 2 and 3.
Figure 2 shows the epoch-wise IFB estimates of IF-PPP1
and UC-PPP models on GMSD and JFNG stations. The IFB
estimate reaches over 16 m for the IF-PPP1, and —8 m for
the UC-PPP model. This implies that the IFB estimate of
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Fig. 3 Differences of the receiver inter-frequency bias (IFB) estimates
with respect to the reference IFB values calculated from MGEX DCB
products (DOY 047/2014)

IF-PPP1 is about twice that of UC-PPP but opposite sign. It
is not surprising if we compare the combination coefficients
between Eqs. 44 and 45. This further confirms our deriva-
tion of the estimable IFB parameters and their relationship
between IF-PPP1 and UC-PPP models. Despite of the large
values of IFB, they are stable enough in a single day and thus
makes it possible to model the IFB as constants. To verify
our IFB estimates, receiver DCBs (i.e., DCB; and DCB3)
extracted from the MGEX products were used to calculate
the reference IFBs according to Egs. 44 and 45. Figure 3
shows the differences of our IFB estimates with respect to
the reference IFB values. It can be seen that most of their dif-
ferences are within 0.1 m, indicating that our IFB estimates
have an accuracy of a few centimeters.

3.3 Simulated kinematic PPP tests
3.3.1 Dual-frequency PPP (BDS VS GPS)

The same data as used in static PPP tests were reprocessed
in kinematic mode 1i.e., the receiver coordinates were mod-
eled as white noise process. Figure 4 shows the epoch-wise
positioning error on CUTO and JFNG stations using L1/L.2
and B1/B2 ionosphere-free combinations. The plots in Fig. 4
show that GPS positioning errors are mostly within 5 cm in
the east and north directions, 10 cm in the up direction after
a short time convergence. The root mean squares (RMS) of
GPS positioning error reach 2-3 cmin horizontal and 4-5 cm
in vertical. For BDS, the positioning performance is worse
than GPS as expected due to the poor geometry, inaccurate
model as well as the limited accuracy of the orbit and clock
products available within the current study (Montenbruck
et al. 2013; Li et al. 2014). Nevertheless, an accuracy of 3—
4 cm in horizontal and 8—10 cm vertically is achievable with
the current BDS constellation.

GPS BDS
JENG

0.1 CUTO

E [m]

-0.1

0.1 k

N [m]

-0.1

0.2
0 JﬂmeMﬂ%%W
-0.2
W
0 6 12 18 240 6 12 18 24
UTC [h]

U [m]

Fig. 4 Comparisons of the BDS/GPS kinematic positioning perfor-
mance with dual-frequency data (DOY 047/2014)

3.3.2 Triple-frequency PPP (IF-PPP1 VS IF-PPP2 VS
UC-PPP)

Figure 5 shows the positioning errors of the triple-frequency
PPP models on three representative stations, and the RMS of
all selected MGEX stations are summarized in Table 3. It is
worth mentioning that solutions of the first half-hour were not
involved in statistics considering that they are not converged
yet. As shown in Fig. 5, solutions from all the three mod-
els perform similarly, suggesting good consistency among
the triple-frequency PPP models. Statistics in Table 3 show
RMSs of 2-4, 2-3, and 8-10 cm in the east, north, and up
directions, respectively, for all the three triple-frequency PPP
models and all the stations except for GMSD. Compared to
the UC-PPP model, solutions of the IF-PPP1 and IF-PPP2
models show even much better agreements since they both
are based on ionosphere-free combinations and have simi-
lar noise level. These differences between the IF-based and
uncombined PPP models mainly lie in the initial time and re-

IF-PPP1

IF-PPP2 UC-PPP

16 240 8
UTC [h]

0 8

16 240 8 16 24

Fig. 5 Comparisons of the kinematic positioning error among triple-
frequency PPP models (DOY 047/2014)
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Table 3 The RMS of simulated kinematic positioning errors for the different PPP models (unit: cm)
RMS East North Up
IF-PPP1 IF-PPP2 UC-PPP IF-PPP1 IF-PPP2 UC-PPP IF-PPP1 IF-PPP2 UC-PPP
CUTO 45 3.8 2.8 2.1 22 2.0 9.4 8.9 6.9
GMSD 8.5 7.3 6.4 32 3.0 2.8 12.5 11.8 10.4
JENG 4.1 32 2.9 2.8 29 2.7 9.5 9.5 9.7
KARR 22 2.1 2.6 2.4 2.5 33 7.1 7.3 8.5
MROL1 1.4 1.3 1.8 2.1 2.0 2.7 8.9 8.5 10.1
XMIS 0.2 1.9 1.9 1.8 1.9 1.9 7.8 7.1 8.1
IF-PPPO IF-PPP1 — 05
S N R
0.4 m CUTo] KARR E ol IF-PPP0  IF-PPP1
,,,,,,, 5 0.
= 0.2H ! ' 5 i
)
E T W Wil ] vt 2 03[
5 £
= 5 0.2 g L R |
) MRO1 o] :
c o i o8
O oMb A WL F TS e —— Mot R LT e
=T A T W A ) i
)
o] 0 ‘ . . ‘ . . .
a 0 3 6 9 12 15 18 21 24
® | XMIS UTC [h]
Fig. 7 3D positioning error of the dual-frequency and triple-frequency

0 8 16 240 8 16 24
UTC [h]

Fig. 6 Comparisons of the kinematic positioning error among triple-
frequency PPP and dual-frequency PPP models (DOY 047/2014: CUTO,
GMSD, and JENG; DOY 118/2015: KARR, MRO1, and XMIS)

initialization stages and can be attributed to the differences in
parameterization, as well as noise level. Nevertheless, such
small differences can be neglected for kinematic applica-
tions.

3.3.3 Benefits of the third frequency (IF-PPPO VS IF-PPPI)

Take the IF-PPPO and IF-PPP1 for example, Fig. 6 shows the
3D positioning error of dual- and triple-frequency PPP tests.
By comparing the results between dual- and triple-frequency
PPP, we can find that the 3D positioning errors agree well
with each other within a few millimeters for most of the
time. Such small differences implies that the contribution
of the third frequency signal is not obvious under the same
conditions of geometry and signal strength (quality).
However, the benefits of third frequency would be signif-
icant in the presence of poor tracking and contamination on
frequencies B1 and B2. To demonstrate this scenario, some
typical examples are presented in Figs. 7, 8, 9 and 10. As
shown in Fig. 7, the IF-PPPO and IF-PPP1 show almost the
same positioning accuracy at the first 6 h. However, the posi-
tioning accuracy of IF-PPPO is significantly worse than that
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PPP on KARR (DOY 150/2015)
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Fig. 8 SNR and number of satellites for the triple-frequency PPP on
KARR (DOY 150/2015)

of IF-PPP1, particularly during the period of UTC 6-15. The
differences of 3D positioning estimates reach over 10 cm.
The poor performance of IF-PPPO is related to the weak sig-
nal strength on B2 for C10 satellite as shown in Fig. 8. We can
find that the SNR (signal-to-noise ratio) of C10 (an MEO)
satellite on B2 frequency becomes obviously smaller than
the other two frequencies since about UTC 6 on KARR. As a
consequence, loss of lock occurs on B2 signal, reducing the
number of available satellites for the IF-PPPO model. For-
tunately, measurements on B1 and B3 frequencies can still
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Fig. 9 3D positioning error of triple-frequency PPP and dual-
frequency PPP on JENG station (DOY 146/2015)
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Fig. 10 Carrier phase residuals of the dual- and triple-frequency PPP
on JENG station (DOY 146/2015)

be used to enhance the geometry and redundancy once the
IF-PPP1 model is applied. Consequently, the third frequency
signal improves the positioning accuracy and reliability.

Another example is shown in Figs. 9 and 10. As shown
in Fig. 9, the 3D positioning errors of IF-PPP1 are smaller
than those of IF-PPPO, particularly during the periods of UTC
7:21-7:26 and 9:53-11:30. The difference of positioning esti-
mates between these two models reaches 5-10 cm during
these periods. The reason for this is the unexpected outliers,
e.g., gross errors and cycle slips that are unfortunately not
effectively detected with B1 and B2 measurements. These
outliers will eventually bias the estimates and be reflected
in residuals as shown in Fig. 10. However, with the third
frequency, more combinations can be used for preprocess-
ing, leading to a higher quality control level. Finally, a more
accurate and reliable solutions can be achieved.

3.4 Ship-borne kinematic PPP tests

For this purpose, 2 h of ship-borne BDS/GPS data were col-
lected at Donghu Lake near Wuhan University on March 21,
2015 (DOY 080). The data have a frequency of 1 Hz and
cutoff elevation angle of 10°. Parallel to the PPP tests, a base
station at a known control point was installed to allow quali-
tative and quantitative assessment of PPP results through the
use of double difference (DD) software, GrafNav. ComNav
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2
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Fig. 11 Location of the base station and the trajectory of the moving
carrier (DOY 080/2015)
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Fig. 12 Number of satellites and GDOP of the ship-borne kinematic
data (DOY 080/2015)

receivers were used at both the rover and base stations. Figure
11 shows the trajectory of moving carrier, and the satellite
visibility and geometry during this period are depicted in Fig.
12. The distance between the base and rover receivers is about
4 km. During this test, DD ambiguity fixing was successful
for most of the epochs, providing positioning accuracy better
than 10 cm.

Similarly, both the BDS dual- and triple-frequency PPP
models were tested with this data set. GPS dual-frequency
PPP solutions were included as well. Figure 13 shows the
consistency between PPP and DD solutions. The RMS sta-
tistics of all the involved results are summarized in Table 4.
It should be noted that the RMS statistics are based on the
latter 1.5 h solutions because the first half-hour are not con-
verged yet. As depicted in Fig. 13, GPS dual-frequency PPP
shows the worse agreement with the DD results, particularly
in the east and up directions. The RMS of their differences
reach 8.4 cm in the north, 32.0 cm in the east, and 26.7 cm in
the up directions. Such poor performance can be attributed
to the limited number of visible satellites as can be seen
in Fig. 12. As for the BDS-based PPP, an average number
of 9 satellites is available for most of the time. They have
good consistencies with the DD results. Statistics in Table 4
suggest an accuracy of 5-6 cm for the north, and 13—15 cm
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GPS IF-PPP0 IF-PPP1 IF-PPP2 UC-PPP

5.44 5.46 5.48
GPS seconds [s] 5

5.4 5.42

Fig. 13 Kinematic positioning errors of both the dual- and triple-
frequency PPP models (DOY 080/2015)

Table 4 The RMS of real kinematic positioning errors for the different
PPP models (unit: cm)

GPS IF-PPPO IF-PPP1 IF-PPP2 UC-PPP
East 32.0 13.6 13.5 13.6 13.2
North 8.4 55 5.6 5.1 4.4
Up 26.7 14.9 15.0 15.3 15.0

for the east and up components. By comparing the results
between BDS dual- and triple-frequency PPP, we can find
that they all agree well with each other after convergence.
To investigate the benefits of the third frequency at the ini-
tial stage, Fig. 14 illustrates the convergence behavior of the
IF-PPPO and IF-PPP1 models. As shown in Fig. 14, the triple-
frequency PPP converges faster and runs much more stable
than the dual-frequency PPP. This is particularly pronounced
in the east direction. Therefore, it can be concluded that PPP
will benefit from the increasing number of signals in terms
of positioning accuracy and robustness, particularly at the
initial stage.

4 Summary and conclusions

To fully exploit the triple-frequency BDS signals, this paper
contributed to the modelling and assessment of triple-
frequency precise point positioning with BDS data. Three
triple-frequency PPP models namely “IF-PPP1”, “IF-PPP2”,
and “UC-PPP” were developed. The former two models use
ionosphere-free combination(s), and the latter one employs
the raw measurements. With the third frequency, receiver
inter-frequency biases arise that need to be taken into account
in triple-frequency PPP. The observation model and stochas-
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Fig. 14 Comparisons of the convergence performance (results of the
first 25 min) between dual- and triple-frequency PPP models

tic model were extended to accommodate the third frequency.
The relationship between different models was then dis-
cussed in detail.

To demonstrate the triple-frequency PPP models, first, a
few MGEX stations located in Asia-Pacific region were used
for static and simulated kinematic PPP tests. For compari-
son, the traditional dual-frequency PPP model with GPS and
BDS data was tested as well. Comparative analyses show
that both dual- and triple-frequency static PPP can reach an
accuracy of a few millimeters in horizontal. Such an accu-
racy is comparable to that of GPS PPP. However, the vertical
positioning accuracy is significantly worse than GPS and
shows systematic biases of 2-3 cm. In addition, the estimated
inter-frequency biases and ionospheric delays are shown and
analyzed. Then, the same static data were used for simulated
kinematic PPP tests. In this case, an accuracy of 3—4 cm in
horizontal and 8—10 cm vertically is achievable with the cur-
rent BDS constellation. Such an accuracy is worse than GPS
by a factor of two due to its poorer geometry and worse orbit
and clock quality. By comparing the results among three
triple-frequency PPP models, they have shown very good
consistencies. Compared to dual-frequency PPP, the benefits
of third frequency would be significant in situations where
there is poor tracking and contaminated observations on fre-
quencies B1 and B2. This implies a stronger robustness for
the triple-frequency PPP. Finally, a ship-borne kinematic data
set was used to test the triple-frequency PPP models in real
dynamic scenarios. Results show that the positioning perfor-
mance is enhanced with the third frequency signals. After
convergence, both the dual- and triple-frequency PPP reach
an accuracy of better than 0.2 m.

The performance of BDS dual- and triple-frequency PPP
is expected to be further improved with more accurate BDS
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orbit and clock products and additional BDS MEO satellites
in orbit in the future. We should acknowledge that only float
PPP solutions are considered in this paper. Investigations on
triple-frequency PPP with ambiguity resolution should be
addressed in the future.
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